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ABSTRACT

We provide a novel web service, called rQuant.web,
allowing convenient access to tools for quantitative
analysis of RNA sequencing data. The underlying
quantitation technique rQuant is based on quad-
ratic programming and estimates different biases
induced by library preparation, sequencing and
read mapping. It can tackle multiple transcripts
per gene locus and is therefore particularly
well suited to quantify alternative transcripts.
rQuant.web is available as a tool in a Galaxy
installation at http://galaxy.fml.mpg.de. Using
rQuant.web is free of charge, it is open to all
users, and there is no login requirement.

INTRODUCTION

The current revolution in sequencing technologies allows
us to obtain a much more detailed picture of transcrip-
tomes via RNA-Sequencing (RNA-Seq) (1-3). Studying
them under different conditions or in mutants will lead
to a considerably improved understanding of the
underlying mechanisms of gene expression and processing.
An important prerequisite is to be able to accurately de-
termine the full complement of RNA transcripts and to
infer their abundance in the cell. Due to the various limi-
tations and biases in next-generation sequencing (NGS)
technologies, such analyses are less straightforward than
one might naively expect. In particular, for accurate quan-
titation of RNA transcripts it appears essential to take the
contribution of such biases and other technical limitations
into account. rQuant implements this idea by simultan-
eously estimating the effect of biases as well as the abun-
dance of RNA transcripts (4,5).

For the study of transcriptomes, currently available
techniques rely on converting the RNA molecules in the
sample into cDNA fragments prior to sequencing. A large
portion of the observed distortions arise during cDNA
library preparation, dependending on the used protocol
(crucial factors are, for instance, priming, fragmentation
and size selection) (3 and references therein). As a result,

the reads are non-uniformly distributed along the tran-
script, influenced by the length of the transcript and the
distance to the transcript boundaries (cf. Figure la).
Moreover, we find that the read coverage also heavily
depends on the sequence context of the fragments (6,7).
We have observed that mono-nucleotides as well as
di-nucleotides do not appear at the same frequency
along the read, in particular at the 5-end of the read
(5). This is consistent with similar observations for small
RNA expression profiling (8).

Biases are also induced by data processing, for instance,
when mapping the sequence reads to a reference genome.
Depending on how well the mapping method can align
spliced reads, the read coverage in proximity of splice junc-
tions typically drops compared to other exonic regions.

Most of these biases can be estimated relatively easily
when exactly one transcript per locus is expressed. If,
however, one considers highly complex transcriptomes,
such as the one in humans, the inference is considerably
more difficult (5) and methods like rQuant are needed to
simultaneously estimate biases and transcript abundances.

There exist a few other quantitation techniques for
RNA-Seq experiments (9-12). Most of these approaches
do not take the biases into account and also differ in their
approach estimating abundances. Moreover, to the best of
our knowledge, rQuant.web is currently the only web
service that allows the estimation of transcript abundances
from RNA-Seq experiments. This service is embedded into
a suite of tools for aligning reads using a combination of
PALMapper (13, 14, G. Jean et al., submitted for
publication), infering new transcripts via mTiM and
mGene (15), and also for testing significance between
samples (currently under development).

METHODS: rQuant

To infer the abundance of given transcripts from
RNA-Seq data, we previously developed a technique,
called rQuant, which is based on solving quadratic
programming problems (4,5). Given an annotation of
(alternative) transcripts and a set of reads that have
been aligned to the reference genome, rQuant infers the
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Figure 1. Transcript profiles: (a) Normalized read coverage with respect to the relative transcript position is shown grouped by five different
transcript length bins for the C. elegans SRX001872 data set (16); (b) The key component of rQuant is to infer the underlying read coverage of
all transcripts at one gene locus (two transcripts in this illustration on the right: transcript 1 is shown in orange and transcript 2 in green), such that
the differences between the observed (grey) and expected (blue) read coverage is minimized. The expected read coverage is inferred from the transcript
abundances w; and w, and the transcript profiles (shown in the graphs on the right), which are inferred simultaneously for several loci.

abundance of each annotated transcript by minimizing the
deviation of the observed from the expected read coverage
at each covered nucleotide (cf. Figure 1b). Formally,
rQuant solves the following optimization problem:

2
T
(Wi, ..., wr) = argmin Z(Cp — Z w,D[,,,> , (1)
=1

Wi,eeoywp=0 peP

where T is the number of transcripts, wy,...,ws are the
transcript abundance estimates, P is the set of genomic
positions considered (corresponding to one genic locus),
C, is the observed read coverage (i.e. the number of reads
covering a position) and D,, is the (estimated) read
density of transcript ¢ at position p. When using rQuant
without bias estimation, D,, = 1, if transcript ¢ is exonic
at position p, and 0 otherwise. In an extended model
described in Ref. (5), the coverage of introns with
spliced reads appears as an additional term in the above
optimization problem.

Due to the experimental biases mentioned above, the
observed read coverage is typically non-uniform over the
transcript (cf. Figure la). Then, D,, may depend on
the relative position in the transcript, the distance to
exon boundaries and the sequence context. While the
first estimation step is solved for each genic locus inde-
pendently, the optimization with respect to the biases con-
siders many loci simultaneously and builds a predictive
model for the expected read density D, ,(0) parameterized
by 6. The basic idea is to find parameters @ such that the
resulting read densities fit well to the observed read cover-
ages. rQuant solves the following optimization problem:

L r 2
0= arg(t)nin Z Z (Cp - Z W;Dz,p(9)> +R(0).

=1 peP; =1

where L is the number of loci, P, is the set of positions
considered for each locus, D, ,(0) is the 0-parametrized
read density for transcript ¢ at position p and R(0) is an
appropriately chosen regularization term to avoid model
overfitting. The details of this estimation step and of the
density model D, ,(0) are given in Ref. (5).

In Ref. (4), we have tested the accuracy of rQuant using
artificially generated reads. In the absence of unbiased and
precise quantitation techniques to compare against, the
generation of artificial reads from transcripts of known
abundance appears to be the only viable option. Only in
this case we indeed know the ground truth such that we
can evaluate how well the method performs. To obtain
artificial reads, we used the ‘FluxSimulator’ (17), a
software for transcriptome and read generation that simu-
lates the biochemical processes underlying the library
preparation. We generated reads from 563 transcripts of
244 alternatively spliced genes in Caenorhabditis elegans.
Subsequently, we applied several variants of rQuant to
quantify the transcripts from the simulated reads. In par-
ticular, we considered quantifying without profiles [as in
Ref. (9) and/or by averaging read coverages over segments
as in Ref. (12)]. The results of this comparison are shown
in Table 1. We observe that rQuant achieves the highest
accuracy when estimating density biases and considering
the read coverages at each nucleotide independently.
A more detailed comparison to other methods is given
in Ref. (5).

WEB SERVER

We provide rQuant.web within the Galaxy framework
(18,19), facilitating an easy interaction between integrated
tools, storing the queries and results in user histories,
and conveniently using workflows for re-occurring tasks.



w350

Table 1. Evaluation of rQuant

Approach Pearson’s correlation
Across genes Within genes
Position-based with profiles 0.882 0.622
Segment-based with profiles 0.818 0.451
Position-based without profiles 0.857 0.511
Segment-based without profiles 0.800 0.402

We compared the full version of rQuant to versions that use averages
of read coverages in exon segments instead of considering each position
separately and/or do not estimate density biases. We used a set of
simulated reads from alternative transcripts with known expression
level [for details cf. (4)]. The Pearson’s correlation between true and
inferred abundance was calculated across all transcripts, as well as the
average of Pearson’s correlation within alternative transcripts of each
gene.

The concept of Galaxy is to split bigger analysis tasks into
smaller steps that may be reused in combination with
other tools. In Ref. (20), we described a web-based
genome annotation system, called mGene.web, which
provides a set of tools for genome-based analyses. For
rQuant.web, we partially reuse the established data
structures, such as genome and annotation objects [sce
Ref. (20) for a detailed description of these modules].
Moreover, rQuant.web makes use of an as yet unpub-
lished Galaxy-based NGS analysis toolbox for NGS
data (available at http://getgalaxy.org).

Modules

rQuant.web currently consists of three main components:
data preparation, quantitation and bias estimation.

Data preparation. As a first step when using rQuant.web,
one starts with uploading the reference genome in FASTA
format, a set of transcripts in GFF3 format and the align-
ments of reads from an RNA-Seq experiment in BAM
format (21). Data can be uploaded using Get Data —
Upload File. For the upload, either the Browse button
can be used or the URL to a file stored on e.g. a FTP
server can be pasted (particularly suitable for larger files).

The tools GenomeTool and GFF2Anno convert the
reference genome sequence and the annotation, respect-
ively, into internal data structures for efficient processing
[cf. (20)]. Read alignments can also be uploaded in
uncompressed alignment format (SAM) and then be con-
verted to BAM format employing the tool SAM-to-BAM
in section NGS: SAM Tools; this uses the SAM toolbox
(21). Taking the aligned read data in the commonly used
SAM/BAM format, our toolbox is applicable to read data
from different NGS platforms, e.g. Illumina GA or
SOLiD. The bias model estimation is motivated by the
observations based on Illumina read data and cDNA
library preparation protocols used for this platform.
However, similar observations have been made for other
platforms when using similar library preparation proto-
cols. Alternatively, raw reads can be uploaded in
FASTQ format and can then be aligned to the reference
genome by applying tools also provided within the Galaxy
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framework [cf. sections NGS: Mapping, based on an as
yet unpublished NGS Toolbox, and NGS: QPALMA
Tools (13, G. Jean et al., submitted for publication)].

Before performing the actual quantitation, the user has
the option to check for the consistency of the uploaded
alignments and annotation with the tool ReadStats. It
generates statistics about the input files, e.g. displays the
number of reads identified in the given annotation, the
median read coverage per gene, the number of spliced
reads and the number of spliced reads overlapping
annotated introns.

Quantitation. With the three prepared inputs, the core
rQuant component determines the abundance of each
transcript in the given annotation. When not using read
density estimates, this tool does not have any parameters
that need to be specified. The output is a GTF file which
contains the annotation with abundance estimates given
for each annotated transcript. rQuant computes two
abundance estimates: one is based on the estimated
average read coverage (ARC) for each transcript and
one is the number of reads per thousand bases per
million mapped reads (RPKM) (3). The ARC value is
the result of the optimization problem (1), i.e. correspond-
ing to variables wy,...,ws, and the RPKM value is
computed based on the ARC value, the transcript length
and the total number of aligned reads.

Read density estimation. To improve the accuracy of the
abundance estimation, rQuant can also be used to infer a
read density model to predict the read density for con-
sidered transcripts. This is done by selecting Learn
Profiles and choosing a number of iterations for estima-
tion. Then rQuant iteratively estimates the transcript
abundances as well as the read density biases over
several transcripts. Typically, not more than five iterations
are needed to reach convergence. The output are the abun-
dance estimates as before and a file that contains the par-
ameters for the read density model. This parameter file can
be used later for quantitations without the need to
reoptimize these parameters (select Load profiles).

Examples and instructions

A description of rQuant.web with examples is available
at http://fml.mpg.de/ractsch/suppl/rquant/web and at
http://galaxy.fml.tuebingen.mpg.de/ (in section NGS:
Quantitation Tools — Examples and
Instructions).

rQuant.web histories and workflows

A history containing the result of the steps for the
provided example can be imported here. In addition, we
prepared a workflow covering all steps of the example that
can be imported here (this requires an account that can be
obtained in the User menu at no charge).

The quantifications, estimated profiles and other objects
can be easily shared with other users via Galaxy’s share
history functionality. Moreover, Galaxy’s Data
Libraries contain items such as genome sequences
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and parsed annotations for several

convenience.

organisms for

Computing time

The median run time per gene locus is a few seconds. We
tested rQuant using reads from the SRX001872 RNA-Seq
experiment for C. elegans with 1893 annotated genes. The
quantitation took about 45min without coverage bias
density. When enabling the coverage bias estimation, the
whole process took roughly 1.5h (one iteration).

DISCUSSION AND OUTLOOK

To the best of our knowledge, rQuant.web is the first and
currently the only online tool to quantitatively analyse
RNA-Seq data. Our web service is an important contribu-
tion to publicly available online NGS tools, enabling
RNA-Seq quantitation for any user. It facilitates the
analysis of NGS data by being embedded in our Galaxy
installation and is very well suited to accurately infer the
abundance of alternative transcripts along with a simul-
taneously learned bias model.

In a next step, we are planning to incorporate several
additional features into the current rQuant.web version.
A straightforward extension is to allow and exploit
paired-end reads. Moreover, we will have an option to
estimate the bias induced by the read content (5).
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